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ABSTRACT 

The Schur-Cohn criterion for the number of zeros of a polynomial inside and 
outside the unit disc fails if the polynomial has a pair of conjugate zeros or a zero on 
the unit circle: the corresponding quadratic form is singular. Recently the authors 
have shown [5] that the classical Schur-Cohn criterion may be deduced from a simple 
algebraic identity; this yields not only a very simple proof but also a substantial 
generalization. The method produces a whole family of quadratic forms which may be 
used for testing the zeros. In the present paper the same algebraic identity is used to 
show that singularity of these quadratic forms is always due to the presence of pairs of 
conjugate zeros or zeros on the unit circle. There is a method for ascertaining zero 
distribution in the singular case by differentiation; we give a derivation of this test on 
the basis of our matrix-theoretic treatment. The second section deals with the same 
problem in the case of a general circle or half plane. 

In 1856 Hermite wrote a letter to M. Borchardt describing a novel 

application of Hermitian forms to the theory of equations, and an extract from 

this letter was subsequently printed in CreUe’s journal [3]. Consider a 

polynomial p of degree n over the complex field C, and define the n X n 
matrix A~[cl,~] by 

i ~la~izi-lwi~l = -i P(w)P*(z)- l?(zb*(w) 
w-2 
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where p*( z ) = p(Z)- . The Hermitian form x *Ax can be converted by a linear 
change of variable to the form 

and Hermite showed that if r = n, then p has k zeros in the upper half plane 
and n - k zeros in the lower half plane. Similar tests for the numbers of zeros . 
of a polynomial lying in other plane regions have since been given [4]; the 
best known is that of Schur and Cohn for the case of the unit disc [l]. The 
criteria are given in numerous textbooks (e.g. [2], [4]). A disadvantage of 
Hermite’s test is the proviso “if r = n.” It can easily happen that A is singular 
-indeed, if p has real coefficients, A =O and the test yields no information. 
Hermite had no comments to make on this difficulty: at that time there was 
still a tendency to regard this type of singularity as an aberration that was 
unworthy of attention. Hermite did not even explicitly make the hypothesis 
that A is nonsingular, no doubt presuming that his correspondent would 
interpret the result in the light of the proof, which is in fact only valid when p 
has no repeated zeros nor any pair of complex conjugate zeros. Later proofs 
(e.g. [4]) have shown that the presence of repeated zeros is no bar to the 
validity of Hermite’s theorem, but it is not hard to see that A will always be 
singular for polynomials having a pair of conjugate zeros. 

Since Hermite’s time many authors have studied zerdocation problems 
and paid attention to singular cases. A notable contribution was that of Cohn 
[l], who, building on work of Schur, showed how to determine the number of 
zeros of a polynomial in the unit disc. He also showed how differentiation 

could be used to handle the singular case. 
The authors have recently given a simple proof and substantial generaliza- 

tion of the Schur-Cohn criterion for the nonsingular case, using a simple 
algebraic identity [5]. In the present paper we extend the method to give a 
simple unified treatment which also encompasses the singular case. 

We begin with the version for the unit disc. Suppose we wish to ascertain 
how many of the zeros of a given polynomial p lie in the open unit disc 

U J? {z EC : 1 z I< l}. The Schtn-Cohn test proceeds as follows. For any 

polynomial p of degree n, 

p(z)=a,z”+a,_,z”-‘+ **e +a,, a, ZO, 

we define a polynomial p, by 

=a&+a,z”-‘+ . *. +a,. 
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Let S denote the n X n matrix 

0 1 0 *.. 0 
0 0 1 .._ 0 

S= : : : . . . : 

(j (j ;, . . . ; 

0 0 0 ... 0 
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with ones on the superdiagonal and zeros elsewhere, and form the Hermitian 
n X n matrix 

H= P”(s)*P”(s)- P(s)*P(sL (1) 

the stars denoting conjugate transpose. As in Hermite’s test, transform the 
Hermitian form x*Hx to a real linear combination of squares by a linear 
change of variable; denote the number of positive coefficients in the resulting 
expression by rr( H). Then, provided H is nonsingular, p has 7r( H) zeros in U 
and no zeros on the unit circle. 

It follows that the Schur matrix H is singular whenever p has zeros on the 
unit circle. Under what other circumstances will be the Schur-Cohn test fail? 
And when it does, how may we determine the zero distribution of p with 
respect to the unit circle? We shall answer these questions for a class of tests 
which includes the Schur-Cohn test. We shall show that any polynomial p can 
be factorized in the form p = fg in a constructive manner and the desired 
information obtained by testing f and g’. 

The first question, as to the singularity of H, is answered by the formula 

where (Y i, . . . , a,, are the zeros of p (see [6, Equation (28)]). However, it takes a 
great deal of calculation to establish this formula, and we shall see that the 
characterization of the singular case is really quite easy, even for a wider class 
of tests. 

We write U for the open unit disc, and V for the complement of the 
closed unit disc. We shall call (Y EC a conjugate zero of p if p(a) =O and 
(up= 1 for some zero /3 of p; otherwise a zero (Y is nonconjugate. Every zero 
on the unit circle is a conjugate zero. We denote the Euclidean norm on C” 
by I(. II. The manic highest common factor of polynomials f, g is written 

(f3g). 
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THEOREM 1. Let p be a polynomial of degree n, let T be an m X m 
matrix, m ) n, such that I - T*T is positive semidefinite and has rank one, 
and let T have no eigenvalue of unit modulus. 

(a) The Hermitian form 

on C” has rank at most n; J has rank n if and only if p has no conjugate 
zeros. lf the canonical form of J is 

then p has T zeros in U and n - r zeros in V (counting multiplicities). 
(b) Zf (p, p,,)(T) is nonsingular, the canonical form of J is 

where T, s are the numbers of nonconjugate zeros of p in U, V respectively. 

Statement (a) is a slight sharpening of the main result of [5]; it describes 
the class of tests we are studying. It includes the Schur-Cohn test, since S has 
the unique eigenvalue 0 and I - S*S =diag{ l,O, . . . ,O}, which is positive 
semidefinite and of rank one, so that S may be substituted for T to give a 
Hermitian form J whose matrix is precisely the Schur matrix (1). 

Proof (a): We can assume that p is manic. Let 

and let 

Then 

Bi = T - cwiZ, Ci = I - G,T, 1GjGn. 

p(T)= B,B,. . . B,, p,(T)=C,C,. . . C,. 

Since Z - T*T is positive semidefinite and of rank one, it has the form uu* for 
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some column vector u EC”’ l(O). It is shown in [5, Equation (5)] that if we let 

q=cn***.c2*u, 

q=c*. . 
n . Ci*+lB*i_l*. . Bfk, 24j<n-1, (4) 

v,,=B,*_,.--B:u, 

then we can write the matrix J of the Hermitian form J as follows: 

J= P,(~)*Po(~)- P(o*P(T) 

= il (wi12)vivi*. (5) 

It follows that the rank of J is at most n. 
To prove the second half of (a) we need the following technical fact. 

LEMMA 1. Let al,..., LY,EC be such that aiZi #l, 1G i, iG n, and let 
polynomials fi, . . . , f, be de defined by 

fl(x)=(l-ff"z)(l-cx(y,_lz)-~*(l-azz), 

fi‘(z)=(l-_(y,z)...(l--(Yi+lZ)(Z-Oli_l)...(Z-(Y1), 2GjGn-1, 

f,(x)=(Z-(y,_l)...(Z-a,). 

nenf,,...,f, are linearly independent. 

Proof. Suppose not: then g,, . . . , g,, where gi(Z)=f,‘(z>/n~=‘=l(l--iz), 
are linearly dependent elements of the space E of &I rational functions whose 
poles belong to the set ((~1’). . . , ai ‘}. By our hypothesis, no Zi belongs to the 
latter set, and hence we can define linear operators Pi : E -+ E, 1 G i G n, by 

p,f(z)= (1--iz)f(x>-(l-~j~i)f(~~) 
1 z - iii 
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It is clear that 
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q{sg(z)}=g(z) forall gEE. 

To say that gi,..., g, are linearly dependent is to assert the existence of 
A i,. . . ,A,, not all zero, such that 

4 + z-4 A2 + _______ . . . 
l- ai.2 l-o,2 l-a,?2 

+ 
z - CT1 .z -012 z--(Y,_l x ___ ___ . . . 
1-cu,Z l-a,2 

n =O* 
l-(Y,_iZ l-cr,.z 

On applying Pn-1Pn_-2* . . P, to this identity we deduce that A, = 0. We may 
then apply P,,_,. . . PI to infer that A,_ i = 0. Continuing in this way, we 
conclude that all Xi = 0. Hence fi, . . . ,f, are linearly independent. n 

We return to the proof of Theorem l(a). Suppose rank J < n: reference to 
(5) shows that either vi,. . . , u, are linearly dependent or some (ai I= 1. In the 
latter case p has a conjugate zero, while in the former we have, for some 
scalars A i, . . . , h n, not all zero, 

X,f,(T’)u + X,f,(T”)u + . . . + A,f,(T*)u =o, 

in the notation of the Lemma. The force of the Lemma is that, if p has no 
conjugate zero, the polynomial q = A, f, + . . . + h,f, is not the zero poly- 
nomial, and so we have shown that there is a nonzero polynomial q of degree 
less than n such that q( T*)u =O. Thus the linear span K of the vectors 
{T*ju: i>O} satisfies dim K < n. Hence K 1 is a nonzero subspace of C”, 
andsinceT*KCK,TKICK1. No~TisisometriconK~,forK~~{u}~ 
and, for any XE(U}~, 

~~~~(~-[(Tx~(~=~*(I-T*T)x=x*uu*x=0. (*) 

We have found a subspace K L of H, invariant under T, of codimension less 
than n, on which T is isometric. It follows that T has an eigenvalue of unit 
modulus, contrary to hypothesis. Thus p must have a conjugate zero. 
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If the canonical form of J is (3), then J is congruent to 
diag(l,l,..., l-1 ,..., - l} (r pluses and n - r minuses). On the other hand, 
(5) can be written 

J= PDP*, 

whereP=[u, ... u,,] andD=diag{l-]a,]2,...,1-)cu,]2}. Jtfollowsfrom 
Sylvester’s law of inertia that 1 - 1 ai I ’ is positive for r i’s and negative for 
n - r i’s, as required. 

(b): We can suppose that the (Y’S are arranged so that 

(i) (+4..., (aZk-i, eZk) are all the pairs of distinct conjugate zeros of 

Pi 
(ii) ff 2k+ 1,. . . , aZkft are the zeros of p which he on the unit circle; 
(iii) cx skft+i,. . . , a2k+f+r are the nonconjugate zeros in U; 
(iv) (Y Pk+t+r+l,. . . ,(Y~~+~+~+~ are the nonconjugate zeros in V. 

Here 2k + t + r + s = n, but any of k, t, r, s can be zero. Let 

so that f, g contain respectively the conjugate and nonconjugate zeros of p, 
and p= fg. T&s p,,=f,g,. 

Now, if (1/3 = 1, 

((Z-(Y)(Z-p))O=(L--~)(l--pz)=(ap)-l(Z-(Y)(Z-p), 

and if (cr(=l, 

(z-a)()=l-S=-&Z-a). 

Combining such identities, we find that fo = h f for some XEC, IX I = 1. On 
the other hand the zeros of g,, being the conjugates with respect to the unit 
circle of the zeros of g, are distinct from all the a,-that is, g and g, are 
relatively prime. Thus p, = fog0 = hfg,, p = fg with (g, g,)=l. It follows 
that f =(p, pa). By hypothesis, f(T) is nonsingular. We have, further, 

J= Po(O*P,(~)- Pw*P(o 
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Thus J is congruent to g,(T)*g,(T)- g(T)*g(T), and so has the same 
numbers of plus and minus signs in its canonical form as the latter matrix. 
Part (a) applied to g shows that these numbers are r and s respectively. n 

Theorem 1 tells us that a failure of the Schur-Cohn test (that is, a 
deficiency in the rank of the Hermitian form T*Hx) can be caused either by 
zeros on the unit circle or by pairs of distinct conjugate zeros, but that the test 
itself cannot distinguish between these two types of singularity. In the worst 
case, when p, = Xp for some scalar X of unit modulus, H =O and the test 
gives no information at all. However, we can still determine the zero 
distribution of p-by applying the Schur-Cohn test to a derivative. 

THEOREM 2. Let p be a polynomial without repeated zeros, and suppose 
that p, = Xp where XE C\(O). The number of zeros of p in U equals the 
number of zeros of p’ in V, and all zeros of p’ are nonconjugate. 

Note that necessarily (Al = 1, as follows from the fact that, whenever 
(z(=l, hp(z)= pa(z)= z”p(z)). 

We shall deduce Theorem 2 from Theorem 1 and the following. 

LEMMA 2. Let p be as in Theorem 2 and have degree n. Let h(z)= zp’( z), 
let T be any n X n matrix such that I - T*T is positive semidefinite and of 
rank one, let T have no eigenvalue of unit modulus, and let 

K = h,(T)*h,,(T)- h(T)*h(T). 

Then K is nonsingular, and the number of zeros of p in U is n - v( K ). 

Proof, Let k be the number of zeros of p in U. Let p,(z)= p(rz), rER. 
The zeros of p, (r #O) are the numbers w/r where w is a zero of p. It follows 
that there exists E > 0 such that whenever 1 - E < r < 1, p, has k zeros in U and 
no conjugate zeros. Hence (p,, (p,),,)= 1. Thus, by Theorem l(b) applied to 

P T) 

k = )y_ 77(9,(7’)*9,(T)- P#“)*P,@% 

where 9r = ( P,)~. Now, since p, = hp, 

9,(2)=z”p,(l/Z)- =rn( :)“p(r/z)- 

= rnpo(z/r)= hr”p(z/r). 
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Hence, if 

we have 

J(r)= r2”P(v)*P(v- P(rq*Pw). 

Now J( .) is a matrix-valued polynomial and so it is differentiable with respect 
to any norm on the space of n X n complex matrices, and we have 

I(r)=I(l)+(r-l)J’(l)+O((r-1)“). 

J(l)=0 and 

J’(r)=2nr ““-‘P(T/T)*p(T/r)-r2”-2T*p’(T/r)*p(T/r) 

- PP2p(T/r)*p’(T/r)T - T*p’(rT)*p(rT) 

- p(rT)*p’(rT)T. 

Hence 

1’(1)=2np(T)*p(T)-2T*p’(T)*p(T)-2p(T)*p’(T)T 

= + [(n?G- ?GY)*(W(~)- P’(W) 

- T*p’( T)*p’( zy] . 

Differentiate the relation p = xp,, that is 

to obtain 

p(z)=Xz”p(l/Z) , 

p’(2)=r;nz”-‘p(l/z)- -LnP2pq1/i) . 

Multiply by z to get 

(6) 
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from which one easily deduces that 

Thus (6) can be written 

J’(l)= p%m*h,(T)- w)*h(vl 

=2K/n. 

Since p has no repeated zeros, p and p’ are relatively prime, and hence 
zp’(z) and np(z)- zp’( z) are relatively prime (the relation pO = hp implies 
that z is not a divisor of p). That is, (h, h,)= 1, and so h has no conjugate 
zeros. It follows from Theorem l(a) that K has rank n and hence is 
nonsingular. 

We now have 

where K is a nonsingular Hermitian matrix. It is easily seen by diagonalizing 
K that 

k=r~~_~(J(r))=~(-K)=n-~(K). n 

Proof of Theorem 2. We have seen in the proof of Lemma 2 that K is 
nonsingular. Thus, by Theorem 1, h has +rr( K) zeros in U and n - m(K) in V, 
all nonconjugate. Now h(z)= zp’(z), so h and p’ have the same number of 
zeros in V, viz. 12 - a(K), which, by the Lemma, is the number of zeros of p 
in U. 

REMARK p also has n-m(K) zeros in V and n -2[n-7r(K)] 
= 24 K) - n zeros on the unit circle. 

Theorems 1 and 2 enable us to determine the zero distribution of any 
polynomial p with respect to the unit circle. Given p, we can calculate 
f =(p, pO) and g =p/f, then (g,g,)=l, so that, by theorem l(b), the 
Schur-Cohn test will succeed for g. And fo = A f for some X, 1 X I= 1. f may 
have repeated zeros, but we can write f = fi. . * fk where each fi has only 
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simple zeros and (fi)a=Xi$, IXil=l: let fi=f/(f,f’), gi=(f,f), fi= 
gi/(gi, gi’), etc. Each $ has only simple conjugate zeros, and so the zero 
distribution of each A can be found by applying the Schur-Cohn test to fi“. 

We now turn to the case of a general half plane or disc. Consider the 
Hermitian 2 X 2 matrix 

lY = 2 ylo [ I ho ’ 

and write 

(7) 

IQ,w)=[w ll1‘[41 
= Ym + YOlZ + YlOW + YllZW. 

LA 

q.={zEC:Iyz,z)>o}. 

This region is only of interest if I has rank 2 and signature zero, which we 
shall therefore assume it to have. Or is then a half plane or circle, and all such 
are of the form f’&. for some I. For any z EC U { co} the conjugate of z with 
respect to r is defined to be the unique number zr~ C U { 00 } satisfying 
r(& z)=o; thus 

$=- Yea +Yloz 

YOl+ YllZ * 

If p is a polynomial of degree n, we define the conjugate of p with respect to 
r, denoted by pr, by 

Clearly pr is again a polynomial of degree n. We say that a is a conjugate zero 
ofp with respect to I? if p(a)=O= p(ar). 

THEOREM 3. Let p be a polynomial of degree n, and let r be a 
nonsingular Hermitian 2 X2 matrix of zero signature. Let R be an m X m 
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matrix, m 2 n, having ru) eigenvalue on the boundary of ti2,, such that 

is positive semidefinite and of rank one, where r is given by (7). 

(a) The Hermitian form 

K(x)= IIpr(R)xl12- ~detT~“llp(R)xl12 (9) 

on C” has rank at most n; K has rank n if and only if p has ru) conjugate 
zeros with respect to r. Zf the canonical form of K is 

then p has r zeros in 8, and n - r zeros in the complement of the closure of 
!2 

r’@) If (p, pr>W) ’ as nonsingular, the canonical form of K is 

where r, s are the numbers of nonconjugate zeros of p in Qt, and the 
complement of the closure G2, respectively. 

Proof. Choose a matrix 

MEa b 
[ 1 c d’ 

ad - bc#O, 

such that 

lY=M*diag{-1,l)M. (10) 

Then z E fit, if and only if 

that is, 
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or equivalently, if and only if 1+(z)1<1, where c$(z)=(u.z + b)/(cz + d). 
Thus z is a zero of p in G?,. if and only if w = 9(z) is a zero in U of the 
polynomial 

Moreover, since the linear fractional transformation C#I maps conjugates with 
respect to l? onto conjugates with respect to +(Qr) = U, $3 maps conjugate 
zeros of p with respect to r onto conjugate zeros of f in the sense of 
Theorem 1. 

Let T = +(R). We can suppose that this is defined (i.e. CA + d # 0 for 
each eigenvalue X of R), since we can replace M by 

(1-_la12)-lin[; 4;]M 

for any (Y, 1 aI < 1, without destroying (10). The matrix (8) can be written 

=(cR+dZ)*(cR+dZ)-(aR+bZ)*(aR+bz) 

=(cR+dZ)*(Z-T*T)(cR+dZ), 

and hence T satisfies the hypotheses of Theorem 1, which may therefore be 
applied to f. We consider 

where 

fob)= w"fwv 

Now (10) is equivalent to 
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Thus 
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-c+&)(z)= 
-c(cz+d)+ii(uz+b) 

cz + d 

= (aa-Cc++&-Ed 

cz + d 

_ - YlO - YllZ 

cz+d ’ 

Note that +(zr) and G(Z) are conjugates with respect to U: that is, zr = 
c#~‘(~/c$(z)-). Hence 

=(cz+d)-“pr(n) 

and 

Thus 

J(x)= IIf,(T)x11’--11f(T)xl12 

= llf,~~(R)xl12-lIf~~(~)~l12 

= (lpr(R)(cR+dZ)-WI2 

-~ad-bc(2”llp(R)(cR+dZ)-“xl12, 

and since we have, on taking determinants in (lo), 

(11) 

(12) 
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comparison with (9) shows that J and K are congruent Hermitian forms. Thus 

rankK=n * rankJ= n 

* f has no conjugate zeros 

G+ p has no conjugate zeros with respect to I?. 

The remainder of the theorem follows similarly. N 

The use of linear fractional transformations also enables us to generalize 
Theorem 2. Let us denote by ‘k, the complement of the closure of fir.. 

THEOREM 4. Let p be a polynomial of degree n, let r be a nonsingular 
Hermitian 2 X 2 matrix of signature zero, and suppose that pr = A p for some 
hECC\{O}. 

(i) If Q2, is a circular disc, then the number of zeros of p in 3, is equal to 
the number of zeros of p’ in 9,. 

(ii) Zf 52, is a half plane and p E q,, then the number of zeros of p in !A, 
is equal to the number of zeros of (z - p)p’( z) - np( z) in 9,. 

Proof. We retain the notation of the proof of Theorem 3. It is clear from 
(11) and (12) that fo is a nonzero scalar multiple of f, so that we may apply 
Theorem 2 to deduce that f, f’ have the same numbers of zeros in U,V 
respectively. It follows that the polynomials ( cz + d)“f o G(Z), (cz + 
d )“-‘~‘oI#I(z) have the same numbers of zeros in Pr, ‘kr respectively. By 
(12) the former is p(z), up to a constant multiple, while differentiation of (12) 
gives 

=(a&bc)“[(cz+d)-“p’(z)-nc(cz+d)-”-’p(z)] 

and hence 

Thus p has the same number of zeros in 9, as (cz + d)p’(z)- w-p(z) does in 
\kr. Now if Qr is a circular disc, we can choose M so that c = 0, d # 0, which 
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yields statement (i). If Q2, is a half plane we can choose up mapping &. onto U 
to take PE ‘k, onto co (or equivalently to take pLrE Q2, onto 0). That is, 
cl + d = 0, and clearly c ZO [else ~(62,) would be a half plane]. Thus 
(~z+d)p’(z)--cp(z)=c[(z-~)p’(z)-~np(z)],and(ii)isestablished. l 

We note further that the proof shows (in conjunction with Theorem 2) 
that all zeros of p’ (in the case of a circular disc) or (z - p)p’(z)- rip(z)) (in 
the case of a half plane) are nonconjugate with respect to r. 

Finally let us observe that the class of Hermitian forms with the Schur-Cohn 
property may be further enlarged by allowing the operator T to act on an 
infinite-dimensional Hilbert space; this requires a slight modification of the 
condition on the spectrum of T. 

Thus the conclusion of Theorem 1 remains valid if T is an operator on an 
arbitrary (not necessarily finite-dimensional) Hilbert space of dimension at 
least n provided T satisfies the following three conditions: 

(i) l- T*T>O, 
(ii) rank(l-T*T)=l, 
(iii) T is not isometric on any invariant subspace of finite codimension. 

The relevance of condition (iii) is apparent from the sentence following 
Equation(*) in the proof of Theorem l(a). Let us remark that condition (iii) is 
satisfied if the spectrum of T is disjoint from the unit circle. 

Similar comments apply to Theorems 3 and 4 with appropriate modifica- 
tions. 
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